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Thermal Analysis of Antenna Structures
Part Il — Panel Temperature Distribution
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This article is the second in a series that analyzes the temperature distribution in
microwave antennas. An analytical solution in a series form is obtained for the
temperature distribution in a flat plate analogous to an antenna surface panel under
arbitrary temperature and boundary conditions. The solution includes the effects of
radiation and air convection from the plate. Good agreement is obtained between the

numerical and analytical solutions.

l. Introduction

In a previous article (Ref. 1) we have indicated that
construction requirements for large Ka-band antennas are
more stringent than those presently used for the S- or X-bands.
In particular, for the Ka-band antennas, environmental factors
such as temperature variations can have deleterious effects on
the antenna panels setting, alignment, antenna pointing and
tracking and therefore on the antenna performance.

In Ref. 1 we have presented a method of analysis that was
used for thermal modeling of the links which make up the

antenna’s backup structure, The present article extends the’

thermal modeling by considering the antenna surface panels.
In future articles we will tie the present panel temperature
analysis to the thermal analysis of the backup structure. In this
way we aim to obtain a temperature simulation of the
complete antenna structure and, from this, calculate the
thermal stresses in the antenna members.

ll. Analysis

To model a single antenna panel, we will be considering a
two-dimensional rectangular plate of length @ and width b as
shown in Fig. 1. The two-dimensional assumption is warranted
because the thickness of the antenna panel is much smaller
than the other dimensions. We want to find the temperature
distribution and the heat flux in this plate under the following
assumptions:

(1) Arbitrary, steady-state temperature boundary condi-
tions; these are labeled Tn(x), Ty(»), Tg(x), and
Tw() in Fig. 1. for the north, east, south and west
sides of the rectangle, respectively.

(2) Heat transfer in the plate occurs due to conduction,
air convection and solar and IR radiation. The plate is
characterized by a thermal conduc’tivity k, a convection
coefficient %, and a short wave solar absorptivity a. No
internal heat generation is assumed.
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(3) Linearized approximation for the radiation heat
transfer to ambient term as indicated in Ref. 1 results
in a radiative heat transfer coefficient

h, = eo F(I*+T2)(T+T,)

Under these conditions, the two-dimensional heat transfer
equation is

2 2 h +h h +h
6_1"+6__T=(r c>T+(a_1_ , cT) "

2 9y? k k k a
or
27 o
VT = a,T+a, (2
where
h,+h
a =%
3
2 ol h,th r
k k a

Equation (2) is a nonhomogeneous partial differential
equation. The following nonhomogeneous boundary condi-
tions are formed for Eq. (1):

T=7T,y forx =0,
T =Ty forx =a,
4)
T =Tgx) fory =0,
T = Ty(x) fory =b.

The following cases are studied to verify the accuracy limits
between analytical solutions in series form and numerical
solutions for homogeneous and nonhomogeneous forms of the
equation.

Case 1. Simple Conduction Problem — Series Solution

When a, =4, =0, Eq. (2) reduces to the conventional
Laplace’s equation and represents a two-dimensional tempera-
ture distribution due to conduction heat transfer only
(Ref. 2). For this simplified case one obtains the following
series solution.
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If one expands the temperature boundary conditions T,
Ts, Ty and Ty, in uniformly convergent Fourier series, the
temperature distribution T(X,Y) will no longer involve
integrals. For this case, the solution is given in Ref. 2.

Case 2. Simple Conduction Problem—Numerical Solutions

The series solution, Eq. (5), can be truncated, and
computed numerically for any arbitrary but finite number of
terms. In this computation, as the number of terms and the
arguments of the trigonometric functions become large,
numerical errors can accumulate and cause instability.
Therefore, when the computational programs were run on
JPL’s UNIVAC 1181, double precision was used for all the
variables. The results of numerically computing the truncated
series solution can be compared with those obtained by solving
Laplace’s equation by numerical means (Ref. 3). The two
methods should give agreeable answers and thus serve as a
check on each other. As an example, consider a square flat
plate (a=b = 1) where the temperature boundary conditions
(nonhomogeneous) are given by:

T, (x) = 150x + 50

T,(x) = 100y + 100

T(x) = -200x + 300 6)
T, (») = =250y + 300

0<x<1,0<y<)




The resulting isotherms for this case are iltustrated in Fig. 2.
The series computation from Eq. (5) is truncated at the tenth
term (7 = 10) and the results show good agreement with those
obtained by a numerical solution of Laplace’s equation (results
are listed in Table 1).

Case 3. The Nonhomogeneous Case—Series Solution

Where ¢, and @, are both nonzero, Eqgs. (2) and (4) form a
complex nonhomogeneous boundary value problem with
nonhomogeneous differential equation and nonhomogeneous
boundary conditions. However, taking advantage of linearity
we use superposition to solve the nonhomogeneous boundary
conditions and separation of variables to solve the
nonhomogeneous differential equation as follows.

Let T(x, ¥) be expressed as a sum of two functions:
T(x,y) = ulx, y)*+f(a, a,) @

If the constant f(a,, a2) is chosen such that:

&

2

f@, a) = - = (®)

—

then replacing (7) into (2) results in a homogeneous partial
differential equation in u (x, ¥):

V2 u(x, y) = a uxy) )

with the following four nonhomogeneous boundary conditions

d2
u(x,0)= T,(x)+ d—l

%
u(x,b) = T,(x)+ 71

(10)
4
u(ay) = T, + e

a
u(@y) = TE@)+;§

The linearity of Eq. (9) allows us to use superposition of four
subproblems; each one has a single nonhomogeneous boundary
condition. Write u (x, ) as the sum

ue,y) = s, p)+t0x,y)+vlx ) +wex,y)  (11)

which when inserted into (9) and (10) gives the following:
V23s(xp) + V22 () + Vv (x) + V2w (ny) =

a s(x, y)+a te,y)ta vx,y)te wixy) (12)

with the following four boundary conditions:

s (x,0) +(x,0) +v(x,0) + w(x,0) = To(x) + %
1

s(x,b) + 1 (x,b) + v (x,0) + w(x,b) = T, (x)+ Z—z—
1

(13)
a

$(00) +1(09) +7(09) +w(0) = T,,0) + =
1
a

$@y) + @) +r @) tw@y) = Lo+

Therefore, the solution of homogeneous Eq.(9) with
nonhomogeneous boundary conditions (10) can be obtained
by solving four subproblems each one having at most one
nonhomogeneity. These four subproblems are

Subproblem 1: A2s =a.s

- 4
Vs(s0) = T+

s(x,b) = 0 (14)
s(oy) =0
s(@y) =0

Subproblem2: V%t = a2
tx,0) =0
)

t(x,b) = T\ (x) + 71 (15)
tioy)=10
t@y) =0
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Subproblem 3: Vi = av
v(x,0)= 0
v(x,p)= 0 (16)
a
v(09) = T, + 22
1
v(ay) =0
Subproblem4: V3w = aw
wx0) =0
wx,b) =0 17
w(@y) =0
4
w(ay) = T(»)+ 2

The solution to subproblem 1 can be found in Ref. 4 as

s@oy) =

sinx_ sinh((b-»)v.,) (° a
i " J- T(x) + _a_z_ sin %, dx
0

, =
2

foper! sinh bym L
(18)
where
mnx
X =g (19)
12
2.2
m
:Ym = (al + 21T ) (20)
a

By analogy with Eq. (18), the other subproblems have the
following solutions.

For subproblem 2, the solution is:

L) =

2 (=]
-2
m=1

sinX_ sinh (vy, ) ¢ a
m m 2 -
Sinh b7, J; [TN(X) + ;z:] sin X, dx

2n
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For subproblem 3, the solution is:
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For subproblem 4, the solution is:
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= +—1 si d
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(23)
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T = (24)
12
2,2
_ mem
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Therefore, the actual temperature field, 7(x,y), from

"Eq. (7) is given by adding Egs. (18), (21), (22) and (23)

T(x,y) =

sin X, sinh @-»r,,
sinh bym

a ) a2
J- [TS(x) + ;1-] sinX,, dx
0
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Equation (26) describes the temperature field throughout
the plate, except at the corner points. For example, for the
boundary x = 0, Eq. (26) reduces to

2 - b 1 4
T0,y) =—5 Zs1 f Tw(y)+a— siny, d -
m=1 0 1 1
27
If Ty, (¥) is constant, Eq. (27) further simplifies to
a hd a
- “2 , (1-cosmm) %2 _
70, ) = 2(Tw+al) Z_smymT e T,
m=1 1
(28)

and the sum

=\ . — (1~ cosmn)
Z Sin ym ——-————-—mn
m=1

can be evaluated numerically. The series converges to a value
of 0.5 but the convergence is quite slow, as shown in Fig. 3,
where after 200 terms, the value of the series is 0.498. The
series converges to a value of 0.5 even close to the plate
corners, but the closer one approaches these corners, the
slower the convergence is (see Fig. 4).

Our model of the antenna surface panels and their backup
structure assumes that the bars placed at the edges of each
panel receive heat from the panels by conduction only. This
means that we must calculate the heat flux ¢ at each edge,
where

_ 3T 0T

: " a5y (29)

o

Using Eq. (26) and Leibnitz’s rule, these edge fluxes are
calculated as follows:
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x=a
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In Egs. (30) through (33), the following abbreviations were
used:

TN = TN(X) +El‘
TS = TS (x) + ‘1_1
P (34)
= _ 2
TE = TE )+ ;l—l
TW = Tw(x) +;l_1

lll. Summary

The purpose of this analysis is to determine the thermal
influence of the antenna panels on the neighboring bars that
make up the antenna backup structure. The problem analyzed
is that of a flat rectangular plate under conductive, convective
and radiative heat transfer. The plate is bounded by bars at its
four edges. For arbitrary temperature boundary conditions we
have determined the temperature distribution within the plate
as well as the temperature flux at the edges. The analytical
solutions are expressed in terms of trigonometric series. The
panel heat fluxes at its edges represent, in turn, heat fluxes to
or from the bars of the backup structure. Therefore, the
interactions of fluxes obtained in this paper with fluxes from
the bar model developed in Part I are necessary to develop the
thermal behavior of the antenna reflector structure.
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List of Symbols

length of plate T  absolute temperature

solar radiative absorptance

coefficients in the generalized heat transfer equation ¢ radiative emittance

o Stefan-Boltzman constant
width of plate
¢  Flux from the edge of the plate
radiation shape factor _
Subscripts

heat transfer coefficient .
@ ambient

solar radiation intensity ¢ convective

thermal conductivity r  radiative




Table 1. Comparison of numerical and series results for conduction heat transfer only

Temperature map in the plate—series solution

x/a
b T00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.0 50.00 65.00 80.00 95.00 110.00 125.00 140.00 155.00 170.00 185.00 200.00
0.9 75.00 87.31 98.04 109.93 120.90 133.02 143.93 156.49 167.35 181.31 190.00
0.8 100.00 108.64 116.43 124.32 132.28 140.36 148.50 156.85 165.52 174.93 180.00
0.7 125.00 130.31 134.41 138.83 143.34 147.91 152.56 157.34 162.32 167.90 170.00
0.6 150.00 150.84 152.26 153.29 154.32 155,39 156.50 157.65 158.77 159.23 160.00
0.5 175.00 173.05 170.20 167.72°  165.27 162.82 160.39 157.95 155.46 153.20 150.00
0.4 200.00 193.52 188.09 182.16 176.20 170.24 164.28 158.29 152.25 145.80 140.00
0.3 225.00 216.21 206.08 196.60 187.14 177.67 168.18 158.68 149.16 139.94 130.00
0.2 250.00 236.08 223.95 211.07 198.06 185.12 172.09 159.11 146.05 132.66 120.00
0.1 275.00 260.22 241.06 226.23 208.45 193.04 175.61 159.96 142.61 127.18 110.00
0.0 300.00 280.00 260.00 240.00 220.00 200.00 180.00 160.00 140.00 120.00 100.00
Temperature map in the plate—numerical solution
x/a
yib
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.0 50.00 65.00 80.00 95.00 110.00 125.00 140.00 155.00 170.00 185.00 200.00
0.9 75.00 87.63 99.72 111.53 123.15 134.65 146.02 157.28 168.40 179.34 190.00
0.8 100.00 109.68 118.69 127.26 135.53 143.57 151.39 158.99 166.34 173.38 180.00
0.7 125.00 131.41 137.15 142.42 147.32 151.91 156.22 160.25 163.94 167.22 170.00
0.6 150.00 152.94 155.28 157.15 158.64 159.80 160.64 161.14 161.26 160.92 160.00
0.5 175.00 174.33 173.15 171.55 169.59 167.31 164.70 161.73 158.36 154.49 150.00
0.4 200.00 195.62 190.83 185.69 180.24 174.49 168.44 162.05 155.26 147.95 140.00
0.3 225.00 216.82 208.34 199.60 190.61 181.38 171.89 162.10 151.94 141.30 130.00
0.2 250.00 237.94 225.70 213.28 200.70 187.95 175.00 161.83 148.37 134.49 120.00
0.1 275.00 259.00 242.92 226.76 210.51 194.17 177.73 161.17 144.44 127.45 110.00
0.0 300.00 280.00 260.00 240.00 220.00 200.00 180.00 160.00 140.00 120.00 100.00
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Fig. 1. Geometry of panel analyzed
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Fig. 2. Isotherms in a plate with conduction heat transfer only
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Flg. 4. Series convergence for y/b = 0.05




